Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Yeast as a model to understand the interaction between genotype and the response to calorie restriction.

Identifieur interne : 001094 ( Main/Exploration ); précédent : 001093; suivant : 001095

Yeast as a model to understand the interaction between genotype and the response to calorie restriction.

Auteurs : Jennifer Schleit [États-Unis] ; Brian M. Wasko ; Matt Kaeberlein

Source :

RBID : pubmed:22828279

Descripteurs français

English descriptors

Abstract

Calorie restriction is reported to enhance survival and delay the onset of age-related decline in many different species. Several proteins have been proposed to play a role in mediating the response to calorie restriction, including the target of rapamycin kinase, sirtuins, and AMP kinase. An enhanced mechanistic understanding of calorie restriction has popularized the concept of "calorie restriction mimetics", drugs that mimic the beneficial effects of caloire restriction without requiring a reduction in nutrient intake. In theory, such drugs should delay the onset and progression of multiple age-related diseases, similar to calorie restriction in mammals. Despite the potential benefits of such calorie restriction mimetics, however, relatively little is known about the interaction between genetic variation and individual response to calorie restriction. Limited evidence from model systems indicates that genotype plays a large role in determining both the magnitude and direction of effect that calorie restriction has on longevity. Here we present an overview of these data from the perspective of using yeast as a model to study aging and describe an approach we are taking to further characterize the molecular mechanisms underlying genotype-dependent responses to calorie restriction.

DOI: 10.1016/j.febslet.2012.07.038
PubMed: 22828279
PubMed Central: PMC4016815


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Yeast as a model to understand the interaction between genotype and the response to calorie restriction.</title>
<author>
<name sortKey="Schleit, Jennifer" sort="Schleit, Jennifer" uniqKey="Schleit J" first="Jennifer" last="Schleit">Jennifer Schleit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Washington, Seattle, WA 98195-7470</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wasko, Brian M" sort="Wasko, Brian M" uniqKey="Wasko B" first="Brian M" last="Wasko">Brian M. Wasko</name>
</author>
<author>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22828279</idno>
<idno type="pmid">22828279</idno>
<idno type="doi">10.1016/j.febslet.2012.07.038</idno>
<idno type="pmc">PMC4016815</idno>
<idno type="wicri:Area/Main/Corpus">001121</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001121</idno>
<idno type="wicri:Area/Main/Curation">001121</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001121</idno>
<idno type="wicri:Area/Main/Exploration">001121</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Yeast as a model to understand the interaction between genotype and the response to calorie restriction.</title>
<author>
<name sortKey="Schleit, Jennifer" sort="Schleit, Jennifer" uniqKey="Schleit J" first="Jennifer" last="Schleit">Jennifer Schleit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Washington, Seattle, WA 98195-7470</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wasko, Brian M" sort="Wasko, Brian M" uniqKey="Wasko B" first="Brian M" last="Wasko">Brian M. Wasko</name>
</author>
<author>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Caloric Restriction (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Longevity (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Levures (génétique)</term>
<term>Levures (physiologie)</term>
<term>Longévité (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Restriction calorique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Levures</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Levures</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Caloric Restriction</term>
<term>Genotype</term>
<term>Longevity</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Génotype</term>
<term>Longévité</term>
<term>Modèles biologiques</term>
<term>Restriction calorique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Calorie restriction is reported to enhance survival and delay the onset of age-related decline in many different species. Several proteins have been proposed to play a role in mediating the response to calorie restriction, including the target of rapamycin kinase, sirtuins, and AMP kinase. An enhanced mechanistic understanding of calorie restriction has popularized the concept of "calorie restriction mimetics", drugs that mimic the beneficial effects of caloire restriction without requiring a reduction in nutrient intake. In theory, such drugs should delay the onset and progression of multiple age-related diseases, similar to calorie restriction in mammals. Despite the potential benefits of such calorie restriction mimetics, however, relatively little is known about the interaction between genetic variation and individual response to calorie restriction. Limited evidence from model systems indicates that genotype plays a large role in determining both the magnitude and direction of effect that calorie restriction has on longevity. Here we present an overview of these data from the perspective of using yeast as a model to study aging and describe an approach we are taking to further characterize the molecular mechanisms underlying genotype-dependent responses to calorie restriction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22828279</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>586</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Yeast as a model to understand the interaction between genotype and the response to calorie restriction.</ArticleTitle>
<Pagination>
<MedlinePgn>2868-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.febslet.2012.07.038</ELocationID>
<Abstract>
<AbstractText>Calorie restriction is reported to enhance survival and delay the onset of age-related decline in many different species. Several proteins have been proposed to play a role in mediating the response to calorie restriction, including the target of rapamycin kinase, sirtuins, and AMP kinase. An enhanced mechanistic understanding of calorie restriction has popularized the concept of "calorie restriction mimetics", drugs that mimic the beneficial effects of caloire restriction without requiring a reduction in nutrient intake. In theory, such drugs should delay the onset and progression of multiple age-related diseases, similar to calorie restriction in mammals. Despite the potential benefits of such calorie restriction mimetics, however, relatively little is known about the interaction between genetic variation and individual response to calorie restriction. Limited evidence from model systems indicates that genotype plays a large role in determining both the magnitude and direction of effect that calorie restriction has on longevity. Here we present an overview of these data from the perspective of using yeast as a model to study aging and describe an approach we are taking to further characterize the molecular mechanisms underlying genotype-dependent responses to calorie restriction.</AbstractText>
<CopyrightInformation>Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schleit</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wasko</LastName>
<ForeName>Brian M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kaeberlein</LastName>
<ForeName>Matt</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AG039390</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 ES007032</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AG039390</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32ES007032</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031204" MajorTopicYN="Y">Caloric Restriction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008136" MajorTopicYN="N">Longevity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22828279</ArticleId>
<ArticleId IdType="pii">S0014-5793(12)00606-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.febslet.2012.07.038</ArticleId>
<ArticleId IdType="pmc">PMC4016815</ArticleId>
<ArticleId IdType="mid">NIHMS578454</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2006 Jun 2;312(5778):1312; author reply 1312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16741098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Nov;1(5):e69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16311627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Interdiscip Top Gerontol. 2007;35:83-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17063034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Dec;5(6):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17129213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Dec;5(6):441-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 2;282(9):6161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2007 Mar;12(5-6):218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 May 31;447(7144):550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17476212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(11):1323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17396225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;371:89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2007 Aug;42(8):709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17482403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 29;450(7170):712-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):564-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Apr;20(2):126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18394876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2008 Jun;7(3):394-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:727-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18373439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2008;24:29-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2009 Jan;8(1):18-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2009;(27). pii: 1156. doi: 10.3791/1156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19421136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2009;(28). pii: 1209. doi: 10.3791/1209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19590001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1170:688-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1790(10):1067-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 8;461(7265):793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Feb;9(1):92-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2010 Feb;32(2):96-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20091754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2010 Mar;21(3):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20004110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2010 Mar;32(1):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19904628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Apr;9(2):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jun 9;11(6):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Dec 15;9(24):4788-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21150328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Jun 6;585(11):1537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Aug;10(4):629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21388497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiology (Bethesda). 2011 Aug;26(4):214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Sep;7(9):e1002253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21931558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Contemp Clin Trials. 2011 Nov;32(6):874-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21767664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Dec;10(6):1089-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21902802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oral Dis. 2012 Jan;18(1):16-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21749581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2012 Apr;11(2):254-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Apr;13(4):225-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22395773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 28;486(7404):490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2000 Aug 15;117(1-3):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10958920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2000 Dec 1;120(1-3):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2001 Jul;36(7):1035-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alcohol Clin Exp Res. 2002 Feb;26(2):149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11964553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Nov;22(22):8056-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 8;423(6936):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Aging Knowledge Environ. 2001 Oct 3;2001(1):pe1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14602950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jan 16;557(1-3):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6659-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Apr;166(4):1661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Apr;73(4):1279-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1063408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Mar;81(6):1835-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6608731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 1986 Apr;116(4):641-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3958810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 1998 Dec;9(12):969-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Oct 1;13(19):2570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1959 Jun 20;183(4677):1751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13666896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Jan;126(1):17-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Apr;126(4):491-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Sep;126(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Apr;5(2):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626389</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
<name sortKey="Wasko, Brian M" sort="Wasko, Brian M" uniqKey="Wasko B" first="Brian M" last="Wasko">Brian M. Wasko</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Schleit, Jennifer" sort="Schleit, Jennifer" uniqKey="Schleit J" first="Jennifer" last="Schleit">Jennifer Schleit</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001094 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001094 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22828279
   |texte=   Yeast as a model to understand the interaction between genotype and the response to calorie restriction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22828279" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020